engineer22.com

HIGHWAY ENGINEERING GEOMETRIC DESIGN

The Driver, The Vehicle & The Road

Components of	highway	Transfortation	a
---------------	---------	----------------	----------

- 1) The Driver
- 2) The Pedestrian
- 3) The Vehicle
- M) The Road
- (S) The Cyclist
- · Reaction must be carried out within avery short
- · most of the information received by a driver is Visual.

من بق مع معنم الناس برؤن والمحدة داخل زاويه مفروطية من 3 م 5 م 5 م م م م عن م 12 درجة من 13 م 12 درجة درط م عن والمؤدة فارح هذا النطاع عن والموحة والالالم المعنى والمحمد المحمد المحم

Visual A Cuity

and fairly Clear Vision Within a Control angle of 3 -> 5 degrees and fairly Clear Vision Within a Control angle of 10 to 12 degrees.

Vision beyond this range is usually blurred-peripheral Vision.

(Color Vision) - Glave Vision and Recovery

- · Color blindness (Moldis) -> Shapes an compensate for it
- a Combinations of black and white or yellow are most Clear.
- dark to light, can be up to 6 seconds or more when moving from I got to dark

Perception - Reaction Process · Perception the driver sees a control device, warning sign or object on the road. رؤے المائق لفائق أولكره على الطريق · Identification the deriver I dentifies the object or control derice and thus understands the Steinylus · Emotion The depriver decides what action to take in response to the Stimulus to step on the brakes, to Pass - Etc Reaction The driver actually executes the action decided on [PIER] time ranges from 1-25 -> 3 seconds. PIER) - Perception - I dentification - Emotion - Reaction

Visual Preception used albayi
. عندما مرى السائف لى عائق على العراق أو اكرة مثلوً محتاج وقت إدراك ورد فعل بين الروية وعند اقذ القرار وهذا الرمن بقرادح سيم
Example 2.5) Sec
Adriver with a preception-reaction time of 2.5 sec is driving at loo km/hr when she observes that an accident has blocked the road ahead. Determine the distance the vehicle would move before the driver could activate the brakes of
Distance (D) = Velocity x time
$D = 100 \times \frac{1000}{60 \times 60} \times 2.5 = (69.4) \text{ m}$
- - -

Braking Distance abjultance

Pois braking distance (horizontel) in metas

Vi and Vz are initial and final speed (m/hr)

(f) is a coeff of longitudinal friction = (0.3 -> 0.4)

(s) is longitudinal slope

Example

intends to leave the expressivary using an exit ramp with a maximum speed of Go xm/hr. at what point on the expressivary Should the motorist step on her brakes in order to reduce her speed to the maximum allowable on the ramp just before entering the ramp. if this section of the expressivary has a dampade of 3 1. 2

$$V_{1} = 160 \text{ km/hr}, V_{2} = 68 \text{ km/hr}, \beta = 3 \%$$

$$D_{b} = \frac{(V_{1}^{2} - V_{2}^{2})}{254 * (f \pm 5)} = \frac{(105 - 62)}{254 * (0.35 - 60.03)}$$

= 78.8 m.

ر مسافظ السرؤيت مسافظ السرؤية على المسافظ السرؤية على المسافظ المسافل المسافظ المسافظ المسافظ المسافل المسافل المسافل المسافل المسافل

(A)	ing 5	sight dis	tan Ce		
	م ارضاً Sight	distance	الوريكا	الرؤية	ailmo_

10-01	<u>6-01</u>	100A	Flocin
			-
ه دراک وردانفعل	81 ailmo	الم	······································
fel ception & reacho		tolling distance	
· · · · · · · · · · · · · · · · · · ·	أمى (دالفعل		
22D= /*		V ²	
3 <i>-6</i>	25	54 (f±5)	***************************************
اثهة رو الفعل	à	ماقة الوط	• · · · · · · · · · · · · · · · · · · ·
initial speed	(·V)	4) (و- حاك	F 2)
(Kanlhr)	*	-) لوهابط	s)

	Exam ple
	A motorist travilling at 100 km/hr a downgrade of 5% on a highway observes a crash a head of him. If the motorist was able to stop his vehicle 10 m from the overturned track what was his distance from the truck when he first observed the crash?
	assume preception reaction time is (2.5) sec
-	50L+
	$55D = \frac{\sqrt{xt}}{3.6} + \frac{\sqrt{2}}{254 \times (f \pm 5)}$
	100 +2-5 (100)
	$= \frac{100 \pm 2.5}{3.6} + \frac{(100)^2}{254 \pm (0.35 - 0.05)}$
	= 200.7 m
	8. Total distance from Crash is
	200.7 + 10 = (210.7) m
ŀ	
	······································

(B) Passing Sight distance

مسافة الرؤة النكم) هم افعل ما فقة تسمح بخررا و صفي السير تسير بسركة منتظمة والانتقال للي الإعام الأفر والعودة إلى نفس الانتخاه دوم فطر الإطعام بوقة السير القادمة من الانتخاء الآذ

(هام) مى بر توجد الإن العلى الم عاد 2 العام

PSD = d1+d2+d3+d4

(d1) A	Perception	and 1	reaction	time dis	tan G
<u> </u>	= (V-m) * £1	······································	= V	
	3., take				
(d2) di	istance lass overtaking	sing Vehic	cle occup)	ies left	lone
dz	$= \frac{V + t_2}{3.6}$				
	-take	tz= 7- overtakn	g time.		
(d3) cl	learance dist I the oppositional	and betw	leen tha	Daci. 2 - 160	hicle safe
·	2 * U** 3.6	13		·	• • • • • • • • • • • • • • • • • • • •
, , , , , , , , , , , , , , , , , , ,				Safety t	The
(d4)	distance				
of the contract of the state of the contract o	$= \frac{2}{3} \times \frac{\sqrt{3}}{3}$				
_	fight dist		-	*** ***** *** ** / / / / / / / / / / /	

2 lane

For

EX

A Vehicle is travelling at go km/hr what will be the minimum passing sight

distance if m=12 km/hr, and overtaking

time is 7 sec

$$J_{1} = \frac{(U-m)*+1}{3.6} = \frac{(90-12)*3.5}{3.6} = (75.83)m$$

$$d_{2} = \frac{U * t_{2}}{3.6} = \frac{90 * 7}{3.6} = (75) m$$

$$d_3 = \frac{2 * V * t_3}{3.6} = \frac{2 * 90 * 1.5}{3.6} = (75) m$$

$$d4 = \frac{2}{3} * d2 = \frac{2}{3} * 175 = (116.67) m$$

Homework	
o Calculate the minimum Passing Sight	
distance required for 2-lave & 3 lanes	
under the following road way condition	
-> Design speed = 80 km/hr	
-> Steed of Vehicle to be overtaked	
= 60 km/hr = (v-m)	
-> overtaking time = 8 Sec	**************

and the second of the second o