HIGHWAY ENGINEERING

GEOMETRIC DESIGN

The Driver, The vehicle \&The Road

Components of highway Transportation a
(1) The Driver
(2) The Pedestrian
(3) The velicice
(4.) The Road
(5) The cyclist

- Reaction must be Carried ont within avery short tine.
- most of the information received by a driver is visual.
 a, $12 \in 10$ (
 Visual Acuity
- most People have clear vision Within a corniced angle of $3 \rightarrow 5$ demos and fairly clear vision Within a Concial angle of to to 12 degrees. vision beyond this range is usually blurred-peripheral vision.
Color Vision. - Glare Vision and Recovery
- Color blindness ($\left.\mu \mathrm{N} \mid \xi_{1}, \varepsilon\right) \rightarrow$ Shapes an compensate for it.
- Combinations of black and white or yellow ane mott Clear.
- For clarevision and recovery about 3 seconds when moving form dark to light, cen be upto 6 siconss or move when moving from light to dark

Perception - Reaction Process

- Perception
the driver sees a control device, warning sign or object on the road.

- Identification
the deviver Identifies the object or control device and thus understands the S imulus.
- Emotion

The deliver decides what action to take in response. to the Stimulus - to step on the brakes to Pass - Etc

- Reaction

The driver actually executes the action decided on [P IIR] time ranges from $1.25 \longrightarrow 3$ second:..
PIER \rightarrow Perception - Identification - Emotion - Reaction

Visual preception 0 pederرs,
化 أ新

$$
1.5-\overrightarrow{(2.5)}^{3} \mathrm{sec}
$$

Example
Adriver with a preception-neactiontime of (2.5) Sec is driving at $100 \mathrm{~km} / \mathrm{hr}$ when she observes that an accident has blocked the road ahead. Determine the distance the vehicle would move before the driver could activate the brakes?

* Sol*

$$
\begin{aligned}
& \text { Distance }(D)=\text { velocity } * \text { time } \\
& D=100 * \frac{1000}{60 * 60} * 2.5=69.4 \mathrm{~m}
\end{aligned}
$$

Braking Distance 2tojltacins

D_{b} is braking distance (horizontal) in metes V_{1} and V_{2} are initial and final speed $\left(k_{n} / h_{r}\right)$
(A) is a co eff of longitudind friction $=(0.3 \rightarrow 0.4)$
(S) is longitudinal slope

Example:

- Amotorist traviling at loo ki/hr on an expresinay intends to leave the exprell way using an exit ramp with a maximum speed of $60 \mathrm{~km} / \mathrm{hr}$.
at what print on the express way should the motorist step on her brakes in order to reduce her speed to the maximum allowable on the ramp just before entering the ramp. if this section of the expressway has 4 downgrade of 3% ?

$$
* \text { Sol }
$$

$$
\begin{aligned}
& V_{1}=100 \mathrm{~km} / \mathrm{hr}, v_{2}=60 \mathrm{~km} / \mathrm{hr} \quad s=3 \% \\
& \begin{aligned}
D_{b} & =\frac{\left(v_{1}^{2}-v_{2}^{2}\right)}{254 *(f \pm s)}=\frac{\left(100^{2}-60^{2}\right)}{254 *(0.35-0.03)} \\
& =78.8 \mathrm{~m} .
\end{aligned}
\end{aligned}
$$

$\left[\begin{array}{c}\ddot{a r} \text { [-l } \\ \text { Sight Distance }\end{array}\right]$
(A) Stopping Sight distance Non passing sight distance
an énós ass.

initial speed.
(V)
(keller)
s(p.g) ($4-S$) bul)

Exam plo
A motorist traveling at loo kmllur a downgrade of $5 t$ on a highway observes a crash a head of him. if the motorist was able to stop his vehicle 10 m from the overturned truck what was his distance from the truck when he first observed the crash? assume preception reaction time is (2.5 sec * Sol*

$$
\begin{aligned}
S S D & =\frac{V * t}{3.6}+\frac{V^{2}}{254 *(f \pm 5)} \\
& =\frac{100 * 2.5}{3.6}+\frac{(100)^{2}}{254 *(0.35-0.05)} \\
& =20.7 \mathrm{~m}
\end{aligned}
$$

\therefore Total distance from crash is

$$
200.7+10=210.7 \mathrm{~m}
$$

(B) Passing sight distance

 Comact ; 部

(di) perception and reaction time distance

$$
d_{l}=\frac{(V-m)+t_{1}}{3.6} \quad=V m
$$

take $t_{1}=$ (3.5) $\mathrm{sec} \cdots \quad . \quad$ درّ
(dd_{2}) distance passing vehicle occupies left lone (overtaking distance.)

$$
d_{2}=\frac{V * t_{2}}{3.6}=\sqrt{m}
$$

take $t_{2}=7 \rightarrow 9$ sec overtaking time:
(du) Clearance distance between the passing vehicle and the opposing vehicle after lasing (sate distance)

$$
d_{3}=\frac{2 * U * t_{3}}{3.6}=\quad \checkmark m
$$

take $t_{3}=1.5$ see safety time
(du) distance traversed by an opposing vehicle

$$
d_{y}=\frac{2}{3} * \frac{U * t_{2}}{3.6}=\frac{2}{3} * d_{2}
$$

Passing Sight distan $a=P S D=d_{1}+d_{2}+d_{3}+d_{4}$ For $\frac{2 \text { lane }}{d}$

Ex
A vehicle is travelling at $g_{0} \mathrm{~km} / \mathrm{hr}$ what will be the minimum passing sight distance if $m=12 \mathrm{~km} / \mathrm{hr}$, and over taking time is 7 sec .

$$
\begin{aligned}
& d_{1}=\frac{(U-m) * t_{1}}{3.6}=\frac{\left(9_{0}-12\right) * 3.5}{3.6}=(75.83) \mathrm{m} \\
& \left.d_{2}=\frac{U * t_{2}}{3.6}=\frac{9_{0} * 7}{3.6}=175\right) \mathrm{m} \\
& d_{3}=\frac{2 * U_{*} *+_{3}}{3.6}=\frac{2 * 90 * 1.5}{3.6}=(75) \mathrm{m} \\
& d_{4}=\frac{2}{3} * d_{2}=\frac{2}{3} * 175=116.67 \mathrm{~m}
\end{aligned}
$$

For 2 lanes

$$
P S D=d_{1}+d_{2}+d_{3}+d_{4}=442.5 \mathrm{~m}
$$

For 3lanes

$$
\text { SD }=d_{1}+d 2+d 3=325.83 \mathrm{~m}
$$

Home work

- Calculate the minimum passing sight distance required for 2 -lase \& 3 lanes under the following road way conditions

$$
\rightarrow \text { Design speed }=80 \mathrm{~km} / \mathrm{hr}
$$

\rightarrow speed of vehicle to be overtaken

$$
=60 \mathrm{~km}_{\underset{(\mathrm{v}-\mathrm{m})}{ } / \mathrm{hr}}
$$

\rightarrow overtaking time $=8 \mathrm{sec}$

